29 research outputs found

    The early B-type star Rho Oph A is an X-ray lighthouse

    Get PDF
    We present the results of a 140 ks XMM-Newton observation of the B2 star ρ\rho Ophiuchi A. The star has exhibited strong X-ray variability: a cusp-shaped increase of rate, similar to that which we partially observed in 2013, and a bright flare. These events are separated in time by about 104 ks, which likely corresponds to the rotational period of the star (1.2 days). Time resolved spectroscopy of the X-ray spectra shows that the first event is caused by an increase of the plasma emission measure, while the second increase of rate is a major flare with temperatures in excess of 60 MK (kT5kT\sim5 keV). From the analysis of its rise, we infer a magnetic field of 300\ge300 G and a size of the flaring region of 1.41.9×1011\sim1.4-1.9\times10^{11} cm, which corresponds to 25%30%\sim25\%-30\% of the stellar radius. We speculate that either an intrinsic magnetism that produces a hot spot on its surface or an unknown low mass companion are the source of such X-rays and variability. A hot spot of magnetic origin should be a stable structure over a time span of \ge2.5 years, and suggests an overall large scale dipolar magnetic field that produces an extended feature on the stellar surface. In the second scenario, a low mass unknown companion is the emitter of X-rays and it should orbit extremely close to the surface of the primary in a locked spin-orbit configuration, almost on the verge of collapsing onto the primary. As such, the X-ray activity of the secondary star would be enhanced by its young age, and the tight orbit as in RS Cvn systems and ρ\rho Ophiuchi would constitute an extreme system that is worthy of further investigation.Comment: 10 pages, 7 figures, 2 tables, A&A accepted, this is the version after the language editor correction

    A Deep Chandra Observation of the Giant HII Region N11 I. X-ray Sources in the Field

    Full text link
    A very sensitive X-ray investigation of the giant HII region N11 in the LMC was performed using the Chandra X-ray Observatory. The 300ks observation reveals X-ray sources with luminosities down to 10^32 erg/s, increasing by more than a factor of 5 the number of known point sources in the field. Amongst these detections are 13 massive stars (3 compact groups of massive stars, 9 O-stars and one early B-star) with log(Lx/Lbol)~-6.5 to -7, which may suggest that they are highly magnetic or colliding wind systems. On the other hand, the stacked signal for regions corresponding to undetected O-stars yields log(Lx/Lbol)~-7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.Comment: file including online material, accepted for publication by ApJ

    Coordinated UV and X-ray spectroscopic observations of the O-type giant xi Per: the connection between X-rays and large-scale wind structure

    Get PDF
    We present new, contemporaneous HST STIS and XMM observations of the O7 III(n)((f)) star xi Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of xi Pper. The variable wind of this star is known to have a 2.086 day periodicity. We use a simple, heuristic spot model which fits the low velocity (near surface) IUE wind line variability very well, to demonstrate that the low velocity absorption in the new STIS spectra of N IV 1718 and Si IV 1402 vary with the same 2.086 day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 years earlier. We also show that the time variability of the new XMM fluxes are also consistent with the 2.086 day period. Thus, our new, multi-wavelength coordinated observations demonstrate that the mechanism which causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multi-wavelength light curve minima is: Si IV 1402, N IV 1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086 day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Further, the high resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blue shifted. If we interpret the low velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180 deg, on the surface of the star. We note that the presence and persistent of two spots separated by 180 deg suggests that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in xi Per.Comment: 23 pages, 14 figure

    Testing massive star evolution, star-formation history, and feedback at low metallicity: Photometric analysis of OB stars in the SMC Wing

    Full text link
    The supergiant ionized shell SMC-SGS 1 (DEM 167), located in the outer Wing of the Small Magellanic Cloud (SMC), resembles structures that originate from an energetic star-formation event and later stimulate star formation as they expand into the ambient medium. However, stellar populations within and surrounding SMC-SGS 1 tell a different story. We present a photometric study of the stellar population encompassed by SMC-SGS 1 in order to trace the history of this structure and its potential influence on star formation within the low-density, low-metallicity SMC Wing. For a stellar population that is physically associated with SMC-SGS 1, we combined near-ultraviolet (NUV) photometry from the Galaxy Evolution Explorer (GALEX) with archival optical (V-band) photometry from the ESO Danish 1.54m Telescope. Given their colors and luminosities, we estimated stellar ages and masses by matching observed photometry to theoretical stellar isochrone models. We find that the investigated region supports an active, extended star-formation event spanning \sim 25 - 40 Myr ago, as well as continued star formation into the present. Using a standard initial mass function (IMF), we infer a lower bound on the stellar mass from this period of 3×104M\sim 3 \times 10^4 M_{\odot}, corresponding to a star-formation intensity of \sim 6 ×\times 103^{-3} M_{\odot} kpc2^{-2} yr1^{-1}. The spatial and temporal distributions of young stars encompassed by SMC-SGS 1 imply a slow, consistent progression of star formation over millions of years. Ongoing star formation along the edge of and interior to SMC-SGS 1 suggests a combined stimulated and stochastic mode of star formation within the SMC Wing. A slow expansion of the shell within this low-density environment may preserve molecular clouds within the volume of the shell, leaving them to form stars even after nearby stellar feedback expels local gas and dust.Comment: 9 pages, 6 figures, 3 table

    The Search for Low-mass Companions of B Stars in the Carina Nebula Cluster Trumpler 16

    Get PDF
    We have developed lists of likely B3--A0 stars (called "late B" stars) in the young cluster Trumpler 16. The following criteria were used: location within 3' of Eta Car, an appropriate V and B-V combination, and proper motion (where available). Color and magnitude cuts have been made assuming an E(B-V) =0.55 mag +/- 0.1, which is a good approximation close to the center of Trumpler 16. These lists have been cross-correlated with X-ray sources found in the Chandra Carina Complex Project (CCCP). Previous studies have shown that only very rarely (if at all) do late main sequence B stars produce X-rays. We present evidence that the X-ray detected sources are binaries with low-mass companions, since stars less massive than 1.4 Msun are strong X-ray sources at the age of the cluster. Both the median X-ray energies and X-ray luminosities of these sources are in good agreement with values for typical low-mass coronal X-ray sources. We find that 39% of the late B stars based on a list with proper motions have low-mass companions. Similarly, 32% of a sample without proper motions have low-mass companions. We discuss the X-ray detection completeness. These results on low-mass companions of intermediate mass stars are complementary to spectroscopic and interferometric results, and probe new parameter space of low mass companions at all separations. They do not support a steeply rising distribution of mass ratios to low masses for intermediate-mass (5 Msun) primaries, such as would be found by random pairing from the Initial Mass Function.Comment: Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at leas

    Phase-dependent study of near-infrared disk emission lines in LB-1

    Get PDF
    The mass, origin and evolutionary stage of the binary system LB-1 has been the subject of intense debate, following the claim that it hosts an \sim70MM_{\odot} black hole, in stark contrast with the expectations for stellar remnants in the Milky Way. We conducted a high-resolution, phase-resolved spectroscopic study of the near-infrared Paschen lines in this system, using the 3.5-m telescope at Calar Alto Observatory. We find that Paβ\beta and Paγ\gamma (after proper subtraction of the stellar absorption component) are well fitted with a standard double-peaked model, typical of disk emission. We measured the velocity shifts of the red and blue peaks at 28 orbital phases: the line center has an orbital motion in perfect antiphase with the stellar motion, and the radial velocity amplitude ranges from 8 to 13 km/s for different choices of lines and profile modelling. We interpret this curve as proof that the disk is tracing the orbital motion of the primary, ruling out the circumbinary disk and the hierarchical triple scenarios. The phase-averaged peak-to-peak half-separation (proxy for the projected rotational velocity of the outer disk) is \sim70 km s1^{-1}, larger than the stellar orbital velocity and also inconsistent with a circumbinary disk. From those results, we infer a primary mass 4--8 times higher than the secondary mass. Moreover, we show that the ratio of the blue and red peaks (V/R intensity ratio) has a sinusoidal behaviour in phase with the secondary star, which can be interpreted as the effect of external irradiation by the secondary star on the outer disk. Finally, we briefly discuss our findings in the context of alternative scenarios recently proposed for LB-1. Definitive tests between alternative solutions will require further astrometric data from GaiaGaia.Comment: To be submitted to ApJ. Comments are welcom

    Carina OB Stars: X-ray Signatures of Wind Shocks and Magnetic Fields

    Get PDF
    The Chandra Carina Complex contains 200 known O- and B type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical Lx/Lbol relation, or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting it may be a massive binary with a period of >30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary, and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403 and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high Lx cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star.Comment: To be published in a special issue of the Astrophysical Journal Supplement on the Chandra Carina Complex Projec
    corecore